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HIGH-FREQUENCY ASYMPTOTIC FORMS OF REFRACTED AND TRANSMITTED WAVES 
WHEN SOUND IS SCATTERED BY A HOLLOW ELASTIC SPHERE FILLED WITH LIQUID* 

A.P. PODDUBNYAK 

The Sommerfeld-Watson transformation, the reflection method and the 
theory of graphs are used to investigate the components of the echo- 
signal from a hollow elastic sphere with a concentric liquid filler, 
formed by reflection and rereflection at the media interfaces. 

A similar approach was used earlier to investigate the sound field in a layer /l/, and 
the rereflection of waves by a two-layer liquid sphere /2/. Reflected and transmitted (geo- 
metric) waves which are of fundamental importance in the potential (background) scattering of 
sound by an object, were considered in /3-8/ assuming the object to be solid. Thepresence 
inside the scatterer of a liquid or elastic filling considerably complicates the process of 
rereflection /9, lo/. Below, we analyze high-frequency harmonic and non-stationary sound 
waves reflected and transmitted by a hollow elastic sphere filled with acoustic liquid. 

1. The problem is stated and formally solved using a Fourier transformation with respect 
to time and expansion in spherical harmonics in /ll/. The Fourier transform of the pressure 
in the scattered wave in the form of a Sommerfeld-Watson integral over the complex angular 
momentum (the normal wave mode number) /12/, which enables the reflected and rereflected com- 
ponents of the echo-signal /2, 3/ to be investigated 

of- (@=-L ‘-P&se)- (“1 

2 1 

(1.1) 

Here C is the part of the contour which also includes the poles of the function R, that cor- 
respond to surface waves /3, 12-15/ and passes along the path at steepest descent, p,(z) and 

QI (4 are the Legendre functions, hr(Q(t) (k = 1, 2) are Hankel spherical functions, f(m) is 
the Fourier transform of the acoustic signal radiated by a point source at a distance lo from 
the centre of the scatterer, which is taken as the origin of a spherical system of coordinates 

r% (0 - 0,cp =0 is the direction to the source), o is the parameter of the Fourier trans- 
formation (the dimensionless frequency), and JJ,, is the normalizing pressure. The function 
R1 is related to zi by the equation /2, 5/ 

where x, 
tions of 
Neumann, 
of these 

x1=--& 1+ i $4) I 

hj’) (0) 

y=hj”) 

is equal to the ratio of two sixth-order determinants, which follow from the condi- 
contact between the elastic and liquid media and composed of combinations of Bessel, 
and Hankel spherical functions /ll/. Omitting the details related to the expansion 
determinants, we present the final formula 

R,=R,“--,v t/F 
(i--N l+R, yF (1.2) 

A:=&+&-, Rp=R,,+& 

jl= A~=(uAYA+bABYLT)-dYLYT (1.3) 

jl=,is k4yA + f.dLT) -gyLYT 

foi AZB (BAYA + ~ABYLT) + EYLYT 

fs = - ,EB [AAYA + (TAB + LYA) YLTI - 

[7t- B (EAYA + TABYLT)] YLYT 
A.B 
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F,L = f'IL', FIT = Z~F~T', J', = 11 - (II - 2) ~JF~A 
FIA' = 'i'o (z2A - %A), II = 2 (l + 11, PO = 2mT* 

UkA = 40 (1 - %A), ukA = 1 - PO & - %A) 

,");A = &A, SkA = UkA + VkA 

f&j")' (0) 

zk="hjc)o 

hlk)' (WA) 

ZkA=mA hfk)(oA) 

YA = tAtA*-', YA = YAYA-', YLT =-mLTaTL, mLT = 1 aLT 1 
(ILT = t,JT* (t~7~*)-‘, .t~ = h,(l) (oA), N, = pps-*, NF z peps-’ 

(A, B = L, T; A # B; i, j, k, p, q, t = 1, 2; i # j) 

where the asterisk denotes complex conjugation. It is also assumed that when A = L, B = T, 
then i = 1, i =2, and when A = T, B = L, then i ~2, j = 1. In formulas with a bar all func- 
tions depend on i3~ = OAE. where @A = @A-', PA = CAC-I (A = L, T, F). In this Case &N,and c, 

are replaced by &F, NF and zif. Here E = ba-I is the ratio of the internal and external 
radii of the shell, cL,cr,ps are the velocities of the longitudinal and transverse waves, and 
the density of the shell material, c, CF, p* I)* are the velocities of sound and the densities 

of the external acoustic medium and the filler, and hik"(z) is the derivative of the Hankel 
spherical function with respect to the argument. The introduction of phase functions (the 
ratio of the Hankel functions of the first and second kind) and the logarithmic derivative 
of the Hankel functions is convenient for a geometric description of the wave propagation. 
Thus the first term in Rio in (1.2) describes the wave reflection from the external surface 
of the shell, and the second describes the propagation'in the shell layer without entering 
the filler. A similar wave picture on the side of liquid filler is obtained by considering 
R,". The second term in RI (1.2) corresponds to rereflection of waves in the shell on 
passing into the filler. 

In a special case, by passing to the limit E-P 0 we obtain an expression for RI that 
corresponds to the scattering of sound by a solid elastic sphere 

f.2 
II,= R,"=R,l+m, ~I=~~LYL f ~~TYT + ~YLYT 

f2 = --r* (kL!/L + hTYT + ‘JYLYT) 

As CT- 0 we obtain the case of a liquid two-layer sphere /2/. If E -+O or E-'1, 
we obtain the case of a dense liquid sphere with parameters cL,ps or cF,p~ , respectively. 

2. For further analysis it is important to establish the physical meaning of the coef- 
ficients in RI (1.2), and to determine their connection with the reflection and transmission 
coefficients. For a solid elastic cylinder this was done in /5/ using complicated trans- 
formations. The same problem was solved more simply by a graphical method in /l/. * By 

*Poddubnyak, A.P., On a method of determining geometric waves, when an acoustic wave is scat- 
tered by an elastic circular cylinder. In: Proceedings of the 6-th Conference of Young 
Scientists. Inst. Appl. Mech. and Math. Academy of Sciences of the UkrSSR, L'vov, 1978. 
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virtue of the presence of an additional inner interface in the object, the process of wave 
rays splitting in the form of a multicomponent chain reaction becomes more complicated. Here 
the theory of graphs is particularly advantageous. 

We will write the function RI in a form equivalent to (1.2) 

(2.1) 

(2.2) 

QAB= 
A,B=L,T;A#B 

We will represent each ray of the longitudinal and transverse wave by continuous and 
dashed lines, considering them to be the edges of the graph, and the points of ray splitting 
as the boundary pointsof the edge (the vertices of the graph). Four graphs are shown in Fig.1 
in which the small circles denote the vertices of the graph on the external surface of the 
shell r =I, while the black dots represent the vertices of the graph on the internal surface 
of the shell r = E. The graphs are constructed for the sums of all L- and T- modes in the 
shell passing through the surface r=l into the external acoustic medium, related to the 
transmission coefficient and the phase path of the respective wave 

(A=L,T;j=1,2) (2.3) 

Cutting any graph at its vertex we obtain three parts, one of which corresponds to the 
"exciting" wave, and the other two to the "excited" L- and T- modes which are of the same 
type as the initial ones. 

In Fig.1 and in (2.3) M,R denotes an A- 

23). >J:., 

graph (A = L, T)with waves formed as a consequence 
of sound waves penetrating into the shell, and 
their reflection and-splitting into L- and T-modes 
on the surface r = e and their emergence into 
the external medium, or after rereflection on the 
external and internal shell surfaces followed by 
transmission into the external acoustic medium. 

' we have an A-graph with waves 

followed by rereflection from the 

L- mode waves, do not touch the filler surface, the 
graph MzL." 

Fig.1 
corresponds to the case of solid sphere. 

The vertices of the graph MS0 and of the graph 
MZT' are on the surface r = 1 (all points in Fig.1 

of these graphs must be black dots). We do not alter graph MST’ and the corresponding graphs 
MzLo, MILo, MIT0 . It is only, when the L- and T- modes propagate outside the filler, that we 
leave only two graphs MzL" and MIT’ with black dots substituted for all points. 

The cut aa' on graph Ma (Fig.1) yields below it the sum of graphs MIL.” andM,TOmulti- 
plied by phase functions of the transmission paths of the L- and T- modes and the reflection 
coefficients of the internal surface r = E 

where FL denotes rays which first emerge after a single internal reflection and splitting on 
surface r= e (a single L-ray in the case of solid) 

FL E - RUFTslLX 12 L - R~~FT21TXT (2.5) 

where R,,LAF are the values of the reflection coefficients characterizing the wave process 
in the acoustic filler, T,,A are the transmission coefficients of the corresponding waves 
passing from the shell into the external acoustic medium,XL and XT are phase functions that 
have the property (in the asymptotic sense for high 1 o 1 ) 



764 

X,” = -Y*, YLT = _XLXT 

The cut bb' of the graph MIA' (Fig.11 similarly yields the sum 

II& = R;:M%XL + R$M& XT 

(2.6) 

(2.7) 

where R,P are the reflection coefficients of waves at the surface T =i from the inside 

and back to the shell. 
Interchanging the subscripts L and T, in (2.4) and (2.7) we obtain analogous expressions 

for IU,$ and MIT'. As the result we obtain a system of fourth-order linearalgebraicequa- 
tions for MIA'. Solving that system using (2.3) we find Mti and MIT. Summing all waves 
first rereflected in the shell, and then propagating into the external acoustic medium, we 
obtain 

u = M2L i- M2T (2.8) 

Formula (2.1) may be represented in the form * 

R, = RIP - U (2.9) 

where R,,is the reflection coefficient of the external surface of the body. We equate terms 
of like phase functions Y in the numerators and denominators of the second terms of the right- 
hand sides of (2.1) and (2.9). Taking into account that the structure of the coefficients 
RABF 

gzphs) 
is of the same form as (2.9) for a liquid sphere (which is also established using the 

where R,, is the reflection coefficient of the wave from the inner surface of the shell into 
the filler, T,/ i: i 
the filler, T,,A is 
filler to the shell 

the transmission coefficient of an A-mode (A =L, T) from the shell to 
the transmission coefficient of the sound wave passing from the acoustic 
when it is converted into an A-mode wave (A = L, T) , we obtain 

(2.10) 

E = ATB (TAYB - ?AgB) 

Relations for -he other coefficients in (1.3) are established by comparing (1.2) with 
(2.1). 

Thus by using ;raphs a physical meaning can be given to the coefficients in (1.3) and 
(2.11, and they can be expressed in terms of the reflection and transmission coefficients 
of the two spherical interfaces r=l and r = a. 

3. We will evaluate the Sommerfeld-Watson integral using the method of steepestdescent 
/16/, assuming that ( 0 1 and IV 1 are large. For this we use the respective asymptotic 
formulas for the Hankel spherical functions and Legendre functions /ll, 12/ appearing in 
(l.l)-(1.3). From these asymptotic forms and (2.6) we represent RI in the form of an 
expansion in reflected and rereflected waves. The result of evaluation of the integral is 

(3.1) 

In the case of a high-frequency short-duration sinusoidal signal /6-0/, we have 

f(T) =sinoOr[U(7)- U(t - CJl, Z = +, 2,=$ 

where oO is the carrier frequency, t is the time, and t, is the signal duration. The compon- 
ents of the geometric part of the echo-signal yield 

*See the previous footnote. 
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Fig.2 Fig.3 Fig.4 

Here Nnm,, (of 3 N -Y/O =siny are the real solutions of the saddle-point equation /16/ 

0 
I- 

nms=-y-%o-%xl-(2n--)(y~-y~)--(~~--~*)- 

?.VF -in -2_ WU (1 -@TN) + (2n - m) IV (I- BLA') - 

u (8 -fb_WI + @- m)V (e-&lv)j 

(3.3) 

sin y =rsinx, = 1,&x, = bdlsin yA = 

#s-l sin 7; (A = L, T; B - L, T, F) 

(3.4) 

L$& = (lo cos x0)” + (r cos x#- 2 (C0s y)” + (2n - m)lW ~0s YL?- 

(e/3~1cos$)@j + m [(~~?'cos~T)~ - (e@ cosi+l -I 

2.9 (4-Q COSi+, a--f% 

f”,m = -3 + sign (Lk) + fh 

f&Ii = mIU(NpL - if U@T -gL) + v(vT -6x 

U(q3L - fiT) - u (ivfkT - $)I -I- 2 hU (BT - es3 + 

;r ML -BT)II~WBT -4 - U (NIL- I)] + 
h---m -&) [v(N@L - e) - u(flpT - e)6T(@T - 

@L) - U OWL - 1) U(@L - bT)l -&U(E - N&) 

Here and. below, U (2) and U*(Z) are the symmetric and antisymmetric unit functions. 
For the functions R*,, we have 

R 000 = RN Rnmo = Bk’ R,,, = -B& (n, m, s+ 0) (3.5) 

The coefficient& corresponds to rereflection from the shell surface and refraction 
back to the external medium, while j& corresponds to transmission into the filler, rereflec- 
tion on the filler surface and refraction into the external acoustic medium. 

The ray pattern of reflection, refraction and rereflection of geometric waves is shown 
in Figs.2-4 for various angles of incidence of the sound pulse on the shell surface. The 
notation corresponds here to the subscripts (rims) of the amplitude functions R,,,,, in (3.5). 

For &,,, %, as a function of Nim we obtain the following dependence on the reflec- 
tion and transmission coefficients in the shell thickness and the filler (2.10) : 

(3.2) 

(3.6) 
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x = min {s, 2n + a - m}, I= min (s, m + a}, N,,,=l 

qjj=max{O,Qi_,- 8$1 Psj> , Q<j = ma= {Ptjt Qi-1) 

m = PM + anmt pel = pl$ + k, ~31 = 2P - k, PII= m - a 

pIa = a - B, pzn = paI - h,, psz = pslv pI1 = p41 + a,, 

%n = 2 (n - m), b, = aL, b, = UT, b, = -(bLT -I- bTL) 

f = fLT -+ fTL, 5, = &L, 5, = ET, 6, = -(fLT + fTL) 

6~’ - aA, co = b,, 6~~ = (--Rlz)+gA 

SAm = (-ftls)“‘F3 (m > I), 5 = iLT + iTL, 7 = iLT + TTL 
Here C,” is the binomial coefficient. Formulas (3.2)-(3.4). toaether with (2.10). enable us 
to 
at 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

I. _ 

estimate in explicit form the amplitude of any of the echo-pulses , and the times of arrival 
the observer, which can be found from the equation z = L,,,+ = ccnst (3.4). 

The author thanks Is. S. Podstrigach and N.D. Veksler for discussing the results. 
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DIFFRACTION OF A PLANE WAVE BY AN INFINITE ELASTIC PLATE STIFFENED 
BY A DOUBLY PERIODIC SET OF RIGID RIBS* 

B. P. BELINSKII 

Thediffractionof a plane wave by an infinite elastic plate stiffened by a 
doubly periodic set of rigid ribs of moderate wave dimensions is studied. 
The problem is reduced to an infinite quasiregular system of linear 
algebraic equations, and their solution describes the amplitudes of the 
waves propagating from the plate into the fluid. 

The effect of a periodic set of parallel ribs, which stiffen an elastic plate, on its 
acoustic properties, has been studied in reasonable detail. An exact solution of the problem 
of the diffraction of a plane wave by such a plate is given in /l/ where the frequency rela- 
tionships of the reflection and transmission coefficients of a plane wave were also studied 
and simple approximate formulas were obtained for the limiting cases. 

1. Me,will investigate the diffraction of a plane pressure wave 

pO = exp (ik ((z cos ‘pO + ysin q),J ain 9, - z GOB 0,)) 
incident on an infinite plate (-W<Z,Y <OQ,Z = 0) stiffened by a doubly periodic set of 
rigid ribs {-~<s<~,~-rnb;--<<~~,~=~na;--<n~m<~). The pressure p(;c,y,z) 
in the medium satisfies the Helmholtz equation with the boundary condition at the plate given 

bY 
D (A;- k,') E (I, Y) + [PI (z = 0) = 0 il.11 

(z#w, ~fmb) 

ko =s @“OFYD )I/* 

Here D is the cylindrical rigidity of the plate, E (x. 8) is its displacement, connected with 
the pressure by the adhesion condition E(z, ~)=p~(r,y, O)/@,d), p. is the density of the 
liquid, A0 is the two-dimensional Laplace operator, k, is the wave number of the flexural 
waves in the plate, p0 is the plate density and H" is its thickness. The symbol [cpl (z = 0) 
denotes the jump in the value of the function q at Z= 0. The harmonic dependence of the 
processes on time exp(-iwt) is omitted. 

We will first assume that fluid is present on one side of the plate only (z> 0). The 
case of two-sided contact can be studied in exactly the same manner. We shall therefore only 
refer to it at the stage of numerical analysis and interpretation of the results. The bound- 
ary contact conditions (BCC) appear when the bending and torsional oscillations of the ribs 
and their rigid coupling to the plate carrying them are taken into account /2/ 

-_D [h,, + (2 - u) &,I (3 = nQ) = --c&t (1.2) 
D [k,; + a&,,] (5 - na) = --i@z& 

(z = M, Y z mbl 

-D [E,,, + (2 - 17) 5,,,1 (Y = mb) = --G& 

D [g,, + O&J (y = mbl = --io&& (Y = mb, 2 # nal 

Here (J is Poisson's ratio of the plate, and the operators &,Z, (p= i,2) are the force and 
momentum impedances of the ribs respectively. 
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